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ABSTRACT 

In this paper, I generalize the landmark L~vy-Solovay Theorem 
[L6vSo167], which limits the kind of large cardinal embeddings that can 
exist in a small forcing extension, to a broad new class of forcing notions, 
a class that includes many of the forcing iterations most commonly found 
in the large cardinal literature. After such forcing, the fact is that every 
embedding satisfying a mild closure requirement lifts an embedding from 
the ground model. Such forcing, consequently, can create no new weakly 
compact cardinals, measurable cardinals, strong cardinals, Woodin car- 
dinals, strongly compact cardinals, supercompact cardinals, almost huge 
cardinals, or huge cardinals, and so on. 

Small  forcing in a large cardinal  context,  tha t  is, forcing with a poset P of 

cardinal i ty  less t han  whatever  large cardinal  a is under  consideration,  is today 

generally looked upon  as benign.  This  outlook is largely due to the l andmark  

Ldvy-Solovay Theorem [LdvSo167], which asserts tha t  small  forcing does not  af- 

fect the measurabi l i ty  of any cardinal.  (Specifically, the theorem says tha t  if a 
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forcing notion P has size less than ~, then the ground model V and the forcing 

extension V P agree on the measurability of ~ in a strong way: all the ground 

model measures on ~ generate as filters measures in the forcing extension, the 

corresponding ultrapower embeddings lift uniquely from the ground model to the 

forcing extension and all the measures and ultrapower embeddings in the forcing 

extension arise in this way.) Since the L@vy-Solovay argument generalizes to the 

other large cardinals whose existence is witnessed by certain kinds of measures or 

ultrapowers, such as strongly compact cardinals, supercompact cardinals, huge 

cardinals and so on, one is led to the broad conclusion that small forcing is harm- 

less; it can neither create nor destroy large cardinals, and one can understand the 

measures in a small forcing extension by their relation to the measures existing 

already in the ground model. 

In general, though, forcing can create new large cardinals or greatly increase 

the large cardinal strength of a cardinal. Outside the class of small forcing, there 

are bizarre effects to be achieved by forcing. One can have a cardinal n, for 

example, which is not even measurable but which becomes supercompact after 

forcing to add a Cohen subset A c_ ~ (see Observation 19 below). Other examples 

can be constructed where the large cardinal property of a cardinal can be turned 

off, then on, then off and on again by forcing. Such light-switch behavior can 

come as a surprise to novice set theorists, who often falsely expect that forcing 

can simply never create new large cardinals. 

Since in the large cardinM context most small forcing is, as it were, just too 

small, what we would like is a generalization of the L~vy-Solovay Theorem that 

applies to the forcing notions more commonly used with large cardinals. With a 

supercompact cardinal ~, for example, one often sees reverse Easton n-iterations 

along the lines of Silver forcing [SilT1] or the Laver preparation [Lav78]. What  

we would really like is to be able to apply the conclusion of the L@vy-Solovay to 

the models created by these more powerful and useful forcing notions. 

Here, I prove such a generalization. For a vast class of forcing notions, in- 

cluding the iterations I have just mentioned, the fact is that every embedding 

j: V[G] --+ M[j(G)] in the extension that  satisfies a mild closure condition lifts 

an embedding j:  V --+ M from the ground model. In particular, every measure in 

V[G] concentrating on a set in V extends a measure on that set in V. From this, 

I deduce that  forcing of this type creates no new weakly compact cardinals, mea- 

surable cardinals, strong cardinals, Woodin cardinals, supercompact cardinals, 

or huge cardinals and so on. 

The class of forcing notions for which the theorem applies is quite broad. All 
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that is required is that  the forcing admit a gap  at some 5 below the cardinal 

in question in the sense that the forcing factors as P * Q where ]? is nontrivial, 

]P] < 5 and I~- Q is _<5-strategically closed. (A forcing notion is _<5-strategically 

closed when the second player has a strategy enabling her to survive through 

all the limits in the game in which the players alternately play conditions to 

build a descending (6 + 1)-sequence through the poset, with the second player 

playing at limit stages.) The famous Laver preparation, for example, admits a 

gap between any two stages of forcing. Indeed, in the Laver preparation, the tail 

forcing is fully directed closed, not merely closed or strategically closed. And the 

same holds for many of the other reverse Easton iterations one commonly finds 

in the literature. Moreover, in practice one can often simply preface whatever 

strategically closed forcing is at hand with some harmless small forcing, such as 

the forcing to add a single Cohen real, and thereby introduce a gap at ~ = wl. 

Further, because Q can be trivial, gap forcing includes all small forcing notions. 

Examples of useful gap forcing notions are abundant. 

An embedding j:  V --+ M is a m e n a b l e  to V when j t A ~ V for any A c V. 

GAP FORCING THEOREM: Suppose that V[G] is a forcing extension obtained 

by forcing that admits a gap at some ~ below ~ and j: V[G] --~ M[j(G)] is 

an embedding with critical point n for which M[j(G)] c V[G] and M[j(G)] ~ c 

M[j(G)] in V[G]. Then M c V; indeed M = V ~ M[j(G)]. I f  the full embedding 

j is amenable to V[G], then the restricted embeddingj [ V: V -+ M is amenable 

to V. And if j is definable from parameters (such as a measure or extender) in 

V[G], then the restricted embedding j [ V is definable from the names of those 

parameters in V. 

A weaker precursor to this theorem appeared in [Ham98a].* The Gap Forcing 

Theorem here answers all of the open questions asked in [Ham98a] and estab- 

lishes a strong generalization of the Gap Forcing Conjecture of that paper, which 

asserted that after forcing with a very low gap every supercompactness embed- 

ding is the lift of an embedding from the ground model. The current theorem 

implies much more: any kind of ultrapower embedding is a lift. 

In order to avoid confusion on a subtle point, let me point out that  given any 

embedding j:  V[G] -+ M, one can set M = U{ j(V~) ] a  c ORD}, and it is not 

difficult to see that j (G) is M-generic, that M = M[j(G)] and moreover that  

j [ V: V --+ M. Thus, while the statement of the theorem concerns embeddings 

of the form j: V[G] -+ M[j(G)], this form of embedding is fully general. 

• The current proof addresses what is probably an inadequate discussion of ~ in 
that proof. 
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For those readers who are not completely familiar with the bizarre sorts of 

embeddings j:  V[G] -4 M[j(G)] that  can exist in a forcing extension, let me stress 

that  in general, quite apart from the question of whether j lifts an embedding 

from the ground model, one must not presume even that M c_ V. For example, 

if n is a Laver indestructible supercompact cardinal in V and we force to add a 

Cohen subset A c a (by itself, this forcing does not admit a gap below ~), then 

remains supercompact in the extension VIA], but any embedding j:  V[A] -4 
M[j(A)] must have A e M and therefore M • V. More dramatic, perhaps, 

are the examples where new large cardinals are created by forcing or where a 

cardinal's large cardinal strength is greatly increased by forcing. The general 

lesson is that forcing can quite easily increase the degree of large cardinal strength 

of a cardinal, and lead to bizarre new embeddings that  do not relate nicely to 

any embedding in the ground model. The point of the theorem, then, is the 

observation that  such situations never occur with gap forcing. And since gap 

forcing is so common, the theorem identifies a serious, useful limitation on the 

sorts of embeddings that exist in the models that  set theorists use and construct. 

My proof will proceed through a sequence of lemmas. Instances of the Key 

Lemma have often appeared in the literature for particular partial orders, with 

perhaps [Mit72] being the earliest; I have used weaker versions of the lemma in 

[Ham98a] and [Ham98b] before subsequently modifying them for use in 

[HamShl98]. In this article, for completeness, I provide a proof of the full 

version. Other important techniques are adapted from Woodin's proof of the 

L6vy-Solovay Theorem for strong cardinals (see [HamWdn]); indeed, Woodin's 

techniques are peppered amongst the proofs of several of the lemmas below, and 

I could not have proved the theorem without them. 

Let me define that a sequence in a forcing extension is f resh  when it is not 

in the ground model but all of its proper initial segments are. Thus, it is a new 

path through a tree in the ground model. 

KEY LEMMA: If  IP] < 1~, l~- Q is <~-strategically dosed and cof(O) > fl, then 
P * 0 adds no fresh O-sequences. 

Proof: It suffices to consider only sequences of ordinals. Furthermore, since 

any fresh 0-sequence of ordinals below ~ may be easily coded with a fresh binary 

sequence of ordinal length ~ • 8, which has the same cofinality as 8, it suffices 

to prove only that  no fresh binary sequences are added. So, suppose towards a 

contradiction that 7- is the P ,  Q-name of a fresh binary 0-sequence, so that  

IF~.Q TO2  ~ & r ¢ ( z & V A < 0 ( T  r A c V ) .  



Vol. 125, 2001 GAP FORCING 241 

Since P is nontrivial, by refining below a condition if necessary we may assume 

it adds a new subset of some minimal ~/<_/~, so that  for some name J~: 

I~-p he2~  & h~ ~ & v~ <~(J~ I ~ c  ~7). 

For every condition (p, q) e • • Q let b(p,q ) be the longest sequence b such that 

(P, q) I~-/~ c_ ~-. Note that  cof(0) > fl is preserved by both P and Q. 

I claim that  a certain weak Prikry property holds, namely, that  there is a 

condition (p, ~) such that for any A < 0 and any stronger condition of the form 

(p, ~) there is an even stronger condition of the form (p, ~) that decides r [ •. 

That  is, below (p, q) the first coordinate need not change in order to decide more 

and more of T. To see why this is so, suppose g * G is V-generic for P * (~. 

For every A < 8 there is a condition (p~, 4~) e g • G that decides r [ A. Since 

cof(0) > fl, it nmst be that a single condition p is used for unboundedly many 

p~. Thus, in fact, this condition p could have been used for every A. So for every 

A there is a name 4 such that (p, q) • g • G decides T I A. By strengthening p 

if necessary, we may suppose that this state of affairs is forced by a condition of 

the form (p, ~). What this means is that for any A and any stronger (p, ~) there 

is an even stronger (p, ~) that decides T [ )~, as I claimed. 

Since no condition decides all of T, it follows from this that for any condition 

(P, ÷) -< (P, q) there are names ÷0 and ÷1 such that (p, ÷0), (P, r l )  _< (p,r) and 

b(p,÷o) -[- b(p,÷l). 
Now I will iterate this fact by constructing in V a binary branching tree whose 

paths represent (names for) the first player's plays in the game corresponding to 

Q. Using a name & for a strategy that with full Boolean value witnesses that  (~ 

is </3-strategically closed in V P, the basic picture is that while the second player 

obeys &, the tree will branch for the first player with moves corresponding to the 

conditions ÷~ given by the previous paragraph. Specifically, I will assign in V to 

each t • 2 <~ a name qt so that along any branch in 2 ~ the condition p forces that  

the names give rise to the first player's moves in a play through Q that  accords 

with the strategy &. That  is, the next move is always below & of the previous 

moves. The first player begins with 4e -- q. If qt is defined, let rt be the name 

of the condition obtained by applying the strategy against the play up to this 

point, i.e., the play in which the first player plays ~ for s _c t. By induction, p 

forces that  these conditions give rise to a play according to &, and so p forces 

that ÷t is stronger than all 4~ for s c_ t. Now, by the previous paragraph the 

first player may reply with either qt*o or 4t~ chosen so that (p, qt-~) _< (P, ÷t) and 

b(p,4~.o) Z b(p,4t~). Similarly, if t has limit ordinal length, then since the strategy 

is forced to be winning for the second player, there will be a condition ~t that  is 
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the result of the strategy h applied to the previous play (q8 [ s C t), and we may 

therefore have the first player choose any qt such that  (p, qt) ___ (P, rt) in order to 

continue the iteration. The effects of this construction are first, that  whenever 

t c [, then (p, q~) ~ (p, qt), and second, that  b(p,O~o) ± b(p,q,, d.  The map t ,-~ qt 

lies in V. 

Now suppose that  g .  G is V-generic below the condition (p, 0). In V[g], let 

h = hg be the new ~/-sequence added by P; let qt = (qt)g be the interpretation 

of the names constructed in the previous paragraph; and let a = (a)9 be the 

interpretation of the strategy. By the assumption on h, every initial segment 

t C h lies in V. By construction, the sequence (qt I t C h) represents the plays 

of the first player in a play that  accords with the strategy a. Thus, since the 

strategy is winning for the second player, there is a condition r below all of them 

(i.e. the .~*h move). Thus, r forces that  b = Ut~hb(p,~lt ) is a proper initial segment 

of T, and consequently b • V. By construction, however, for any t • 2 <'y we 

know t c h exactly when b(p,q d c_ b, since whenever t ^i first deviates from h the 

construction ensures that  b(p,q,~ d deviates from b. We conclude that  h • V, a 

contradiction. | 

Let me now continue with the proof of the theorem. Suppose that  V[G] is a 

forcing extension obtained by forcing that  admits a gap at 5 < ~ and j:  V[G] -+ 
M[j(G)] is an embedding with critical point n such that  M[j(G)] c V[G] and 

M[j(G)] ~ c M[j(G)] in V[G]. Exhibiting the gap, we have V[G] = Y[g][g] 
where g * H c_ p .  Q is V-generic for nontrivial forcing P with IPI < 5 and It- Q is 

<5-strategically closed. The embedding can therefore be written as j:  V[g] [H] -+ 

M[g][j(H)]. I may assume that  5 is regular, since it might as well be IPI +. Since 

the critical point of j is n, every set in V~ is fixed by j .  It  follows that  V~ = M~. 

In these next lemmas, all proved under the hypothesis of the theorem that  I have 

just set up here, I will show even more agreement between M and V. 

LEMMA 2: Every se~ of ordinals a in V[G] of size 5 is covered by a set T in M n V 
of size 5. 

Proof: Since a has size 5, it must be in both  V[g] and M[g]. Thus, using the 

names in V and M, there are sets So e V and sl • M of size 5 such that  a c_ so 

and a c_ Sl. I terating this idea, bouncing between sets in M and sets in V, we can 

build in V[G] an increasing sequence of sets ~ = (an I a < 5} such that  a0 = a,  

a < fl ~ a s  c_ aS, and for cofinally many c~, as  • V and for cofinally many a,  

an • M.  Let 7 = Uff. Thus certainly a c_ v and ~- has size 5. I t  remains to show 

T • M n V .  By the strategic closure of Q we know d • V[g], and so it has a name 
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e V. Since cofinally often (r~ c V, there must  be conditions in g forcing each 

instance of this, bu t  since [~1 < 5 and 5 is regular,  a single condit ion p c g must  

work unboundedly  often, and decide unboundedly  m a n y  elements of i .  Thus,  p 

also decides the union, and so r c V. Similarly, by the closure of the embedding  

it must  be t ha t  Y e M[j(G)] and consequently by the s trategic closure of j (Q)  

actual ly  Y • M[g]. Thus,  it has a name i • M ,  and again because cofinally 

often a a  • M there must  be a single condit ion p • g deciding unboundedly  m a n y  

elements of  i. Thus,  this condit ion decides the union, and so r e M,  as desired. 
| 

LEMMA 3: M and V have the same 5-sequences of ordinals. 

Proof: I t  suffices to show tha t  [ORD] 5 is the same in M and V. Suppose tha t  

o- _c ORD has size 5 and a is in either M or V. By the previous l e m m a  there 

is a set r 6 V A M  of size 5 such tha t  a _c r .  In bo th  M and V we m a y  

enumera te  r = { fl~ I c~ < 3  ̀} in increasing order, where 3` = or ( r )  < 5 +. Let  

A = { c ~ l ~  e a }. This  set is definable from a and r and therefore must  be in 

either M or V, respectively, as a is in either M or V. But  since A c 3', it must  

be in V.~ = M~, and so it is in both M and V. Thus,  a = { ~ I c~ • A } is also in 

bo th  M and V, as desired. I 

LEMMA 4: M_c V. 

Proof: I t  suffices to show tha t  P(O) M c_ V for every ordinal  0. Suppose A c_ 0 

is in M.  By induction,  I m a y  assume tha t  every initial segment  of  A is in V. I f  

cof(0) >_ 5 then A must  itself be in V, for otherwise it would be fresh over V, 

contradict ing the Key  Lemma.  So we may  assmne tha t  cof(0) < 5. Thus,  by 

the dis t r ibut ivi ty  of Q, it follows tha t  A c V[g], and so A = -~9 for some name 

e V. Pick some enormous  ( and an e lementary  subs t ruc ture  X -< V¢ of size 5 

containing i/l and P as well as every element of •. I t  follows tha t  g is X-generic, 

t ha t  X[g] -< V¢[g] and fur thermore  tha t  X and X[g] have the same ordinals. Since 

XcI ORD is a set of  ordinals in V of size 5, by the previous l emma  it must  also be 

in M .  And since A c M ,  it follows tha t  a = A n X is also in M ,  and so again by 

the previous lemma,  a is in V. Thus,  there is some condit ion p e g tha t  forces 

X n A = ~. T h a t  is to say, p decides -4(a) for every a c X. Thus,  

X ~ Ya(p decides A(a ) ) .  

By elementari ty,  it must  be tha t  V< also satisfies this, and so p decides A(c~) for 

all a .  Thus,  A • V, as desired. | 
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By simply enumerating any set in M,  it follows from the previous two lemmas 

that  M ~ ¢_ M in V. 

LEMMA 5: M = V (1 M[j(G)]. 

Proof: Since M c_ V by the previous lemma it follows that  M c_ VMM[j(G)]. For 

the converse, let me first show that  any set of ordinals A in both V and M[j(G)] 

is in M.  Suppose A c_ 0 and, by induction, all the proper initial segments of 

A are in M.  If  the cofinality of 0 is at least 5, then A must be in M because 

otherwise it would be a fresh set added by j (G)  over M,  in violation of the 

Key Lemma. So I may assume that  cof(0) < 5. Thus, A is the union of a 5- 

sequence of sets in M.  Since M ~ c_ M in V, it follows that  A is in M,  as desired. 

Suppose now that  a is an arbi trary set in V n M [ j ( G ) ]  and, by • -induction, that  

every element of a is in M.  I t  follows that  a is a subset of an element b • M. 

Enumerate b = { ba l a < ~ } in M and observe that  it is enough to know that  

the set A = { a < ~ ] b~ • a } is in M. But this is a set ordinals in V N M[j(G)], 

and so the proof is complete. | 

LEMMA 6: I f  the full embedding j: V[G] --4 M[j(G)] is amenable to V[G], then 

the restricted embedding j F V: V --+ M is amenable to V. 

Proof: Suppose that  j :  V[G] --4 M[j(G)] is amenable to V[G]. In order to show 

tha t  j t V: V --+ M is amenable to V, I must show that  j r A e V for any 

A e V. Using enumerations of the sets in V, it suffices to show that  j F 0 e V 

for every ordinal 0. And to prove this, it suffices to show that  j "8  e V for every 

ordinal 0. Let A -- j " 8, and suppose by induction that  every initial segment of 

A is in V. By the amenability of the full embedding, we know that  A e V[G]. 

If col(0) _> 5 then A must be in V for otherwise it would be fresh over V, in 

violation of the Key Lemma. So I may assume that  cof(0) < 5. Consequently, 

by the distributivity of Q, it must be that  A e V[g], and so A = /Ig for some 

name A e V. Again choose some large ~ and X -~ V¢ of size 5 containing A and 

]P as well as every element of P. It  follows that  X M ORb = X[g] N ORD. The set 

X M ORD is a set of ordinals of size 5 in V, and consequently it is in M by the 

lemma above. Let a = A N X -- A N X[g]. Since this is a subset of j " O of size 

5 < n, it must be equal to j " b = j(b) for some set b c_ 0 of size 5. By the cover 

lemma above, there is a set c in both M and V such that  b c_ c and c has size 5. 

Now simply compute a = j "b c (j " c )NX c (j "0 )NX = a, and so a = (j "c) NX. 

But j " c = j(c) e M c V, and so a is in V. Now, continuing as in the previous 

lemma, there must be a condition p ~ g forcing this. So p decides A(c~) for every 
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a • X. By the elementarity of IK -< V¢ it must be that p decides A(a) for every 

ordinal a. Thus, A is in V, as desired. | 

LEMMA 7: I f  the full embedding j: V[G] --+ M[j(G)] is definable from para- 

meters (such as a measure or extender) in V[G], then the restricted embedding 

J I V: V ~ M is definable from the names of those parameters in V. 

ProoF'. This follows actually from the previous lemma. Suppose that  j:  V[G] --~ 

M[j(G)] is definable from the parameter z in V[G]. Thus, there is some formula 

such that j (a)  = b exactly when V[G] ~ qo[a, b, z]. Fix a name ~ for z. Thus, 

for a • V we have j (a)  = b exactly when some p • G forces that  ~o(~, b, ~). 

Since any definable embedding is amenable, it follows by the previous lemma 

that  j [ Vo is in V for every 0. Thus, for every 0 there is a condition p c G 

that forces that the relation qo(~, b, ~) in V[G] agrees with the relation j (a)  = b 

for a c Vo and b • Vj(0). That  is, p forces that the relation ~o(g, b, ~) for a and 

b in the appropriate domain produces exactly the set j [ Vo. By the Axiom 

of Replacement, there must be a single p that works for unboundedly many 0. 

Thus, for this p we know that  j (a)  = b exactly when p forces qo(~, D, ~), for a and 

b in V. So j [ V is definable from ~ in V. | 

This completes the proof of the theorem. I will nevertheless quickly prove one 

additional lemma that will assist in the proofs of the corollaries to come. 

LEMMA 8: Under the hypothesis of  the theorem, 

1. I f  M[j(G)] ~ c M[j(G)] in V[G] then M ~ c_ M in V. 

2. I fV~ c_ M[j(G)] then V~ c_ M.  

Proof  For 1, if M[j(G)] ~ c M[j(G)] in V[G] then any ,k-sequence of elements 

of M that lies in V must lie in V N M[j(G)], and consequently in M. For 2, if 

v~ c_ M[ j ( a ) ]  then V~ c_ V N M[j(G)] = M. . 

One must take care with strongness embeddings in order to satisfy the closure 

hypothesis in the theorem. A cardinal n is A-strong when there is an embedding 

j :  V ~ M with critical point n such that Vx c_ M and j (a )  > )~. Let me define 

that  an embedding j:  V ~ M is f l-elosed when M E c_ M. The problem with 

strongness embeddings, of course, is that they need not satisfy any degree of 

closure. By factoring through by the canonical extender, however, one obtains a 

n a t u r a l  embedding, meaning in addition that M = { j (h) (s )  I h • V & s • V~ } 

(when ,~ = n we require M = { j (h)(n)  I h • V},  i.e., that j is the ultrapower by 
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a normal measure). And for almost every A these natural  embeddings do satisfy 

the closure hypothesis of the theorem. 

LEMMA 9: If  n is A-strong, then the natural A-strongness embeddings j: V -~ M 

are n-closed if A is a successor ordinal or a limit ordinal of cofinality above ~, 

and otherwise they are < cof( A)-closed. 

Proo~ Since the ultrapower by a normal measure on n is n-closed, it suffices to 

consider only the case A > n. Suppose that  j :  V -~ M is a natural  )~-strongness 

embedding, so that  cp(j)  = ~, V~ c_ M and M = { j (h)(s)  Is ~ V~ ~ h c V } .  In 

the first case, suppose that  A = ~ + 1 and (j(h~)(s~) I a < n} is a n-sequence of 

elements from M. Since a n-sequence of subsets of V~ can be coded with a single 

subset of V~, it follows that  (sa I a < n} is in M.  Also, the sequence 

(j(h~) I ~ < n} -- j((h~ I a < ~)) I n 

is in M.  Thus, the sequence (j(h~)(s~) ] a < n) is in M,  as desired. For 

the next case, when A is a limit ordinal of cofinality larger than ~, then on 

cofinality grounds the sequence (sa ] a < n} is in V~, and hence in M,  so again 

(j(h~)(s~) l a < n} is in M,  as desired. Finally, suppose A is a limit ordinal and 

fl < cof(A) ~ t~. If  <j(ha)(sa) I a < fl> is a sequence of elements from M,  then 

again on cofinality grounds we know <so ] a < fl} is in VA and hence in M,  and 

so <j(h~)(sa) [a < fl> is in M,  as desired. | 

The consequence of this argument is that  except for the limit ordinals of small 

cofinality, the Gap Forcing Theorem applies to strongness embeddings. 

I would like now to prove a series of corollaries to the Gap Forcing Theorem. 

I hope these corollaries tend to show that  for a variety of large cardinals the 

restrictions identified in the theorem are severe. 

COROLLARY i0: Gap forcing creates no new weakly compact cardinals. I f  n is 

weakly compact after forcing with a gap below ~, then it was weakly compact in 

the ground model. 

Proof'. Suppose that  ~ is weakly compact in V[G], a forcing extension obtained 

by forcing with a gap below ~. It  follows that  n is inaccessible in V[G] and hence 

also in V. Thus, it remains only to prove that  n has the tree property in V. If  

T is a n-tree in V, then by weak compactness it must have a n-branch in V[G]. 

Since every initial segment of this branch is in V, it follows by the Key Lemma 

that  the branch itself is in V, as desired. | 
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COROLLARY 11: After  forcing with a gap below ~, every ultrapower embedding 

with critical point t~ in the extension lifts an embedding from the ground model, 

and every n-complete measure in the extension that concentrates on a set in the 

ground model extends a measure in the ground model. 

Proof: I am referring here not just to measures on ~, but to measures on an 

arbi trary set D, so that  the corollary also covers the cases of, for example, 

supercompactness and hugeness measures. It  is a standard fact that  any ul- 

trapower embedding j:  V[G] --~ M[j(G)] by a measure # in V[G] is closed under 

t~-sequences where t~ -- cp(j) .  Since the forcing admits  a gap below s, the Gap 

Forcing Theorem implies that  j :  V -~ M is definable from parameters  in V. If 

# concentrates on some set D e V, then since X e # ++ [id]~ e j ( X ) ,  it follows 

that  # N V ~ V is a measure on D in V, and the corollary is proved. | 

COROLLARY 12: Gap forcing creates no new measurable cardinals. I f  t~ is 

measurable after forcing with a gap below t~, then ~ was measurable in the 

ground model and every measure on s in the extension extends a measure in the 

ground model. 

Proof: This is a special case of the previous corollary. | 

As a caution to the reader, let me stress that  the corollary does not say that  

every ultrapower embedding j:  V[G] -+ M[j(G)] in the extension is the lift of 

an ultrapower embedding j F V: V -+ M in the ground model. Rather, one 

only knows that  the restricted embedding j [ V is definable from parameters  

in V. Indeed, it is possible to construct an example of a gap forcing extension 

V[G] with an embedding j :  V[G] --+ M[j(G)] that  is the ultrapower by a normal 

measure in V[G] but the restriction j t V is not an ultrapower embedding at all, 

being instead some kind of strongness extender embedding. 

COROLLARY 13: Gap forcing creates no new strong cardinals. I f  n is A-strong 

after forcing with a gap at 5 < t~, and A is either a successor ordinal or has 

cofinality larger than 6, then ~ was A-strong in the ground model. 

Proof: Suppose that  V[G] is the forcing extension obtained by forcing with 

a gap below (L Lemma 9 shows that  if t~ is A-strong in V[G] for such a A 

as in the statement of the corollary, then there is an embedding j:  V[G] -~ 

M[j(G)] witnessing this that  is closed under ~-sequences. Consequently, by the 

Gap Forcing Theorem, the restriction j:  V --+ M is definable from parameters  in 
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V, and since V~ c_C_ M[j(G)], Lemma 8 implies that  V~ c_ M. So n is A-strong in 

V, as desired. | 

What we actually have is the following: 

COI~OLLARY 14: After forcing P of size less than 6, no further <~-strategically 

dosed forcing Q can increase the degree of strongness of any cardinal ,~ > ~. 

Proof." Suppose that ~ is A-strong in V[g][H], the extension by P * Q, and 

> 5. In the first case, when A is either a successor ordinal or a limit or- 

dinal of cofinality above 6, the previous corollary shows that  ~ is A-strong in 

V and hence also in the small forcing extension V[g]. For the second, more 

difficult case, suppose that ~ is A-strong in V[g][H] and A is a limit ordinal 

with cof(A) < 6. Let j:  Y[g][g] -+ M[g][j(g)] be a A-strong embedding by a 

canonical extender, so that  M[g][j(H)] = { j(h)(s)  I s ~ A <~ & h ~ Y[g][H] } and 

Y[g][H]~ c_ M[g][j(H)]. Thus, j is the embedding induced by the extender 

E = { ( A , s ) [ A c _ g  <~ & s e j ( A )  & s e A < w } ,  

which is a subset of P(n<~) × A <~. This extender is the union of the smaller 

extenders E F fl = E N (P(n<~) × fl<~) for unboundedly many ~ < A. By 

the result of the previous corollary, we may assume that these smaller extenders 

each extend a strongness extender in V. Since each of these extenders extends 

uniquely to V[g], the small forcing extension, it follows by the strategic closure 

of Q that E N Y[g] is in Y[g] and hence n is A-strong in gig], as desired. | 

The two previous results are complicated somewhat by the intriguing possi- 

bility that  small forcing could actually increase the degree of strongness of some 

cardinal. The question of whether this actually occurs, a still-open instance of the 

L@vy-Solovay Theorem, is raised in [HamWdn]. One could ask the corresponding 

question replacing small forcing with gap forcing, is it possible that forcing with 

a gap below ~ can increase the degree of strongness of ~ ? But the truth of the 

matter  is that  the previous corollary shows that if gap forcing P * Q can increase 

the degree of strongness of a cardinal, then this increase is entirely due to the 

initial small forcing factor P. So the original small-forcing question is really the 

primary one. Corollary 13 shows that  any positive answer to this question will 

involve a <A-strong cardinal that is made A-strong for some limit ordinal A of 

small cofinality. 

COROLLARY 15: Gap forcing creates no new Woodin cardinals. I f  ~ is Woodin 

after forcing with a gap below ~, then ,~ was Woodin in the ground model. 
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Proo£" If  n is Woodin in V[G], then for every A c_ n there is a cardinal "y < n that  

is <n-strong for A, meaning that  for every A < n there is an embedding j :  V[G] -+ 

M[j(G)] with critical point ~, such that  A N A = j (A)  N A. Such an embedding 

can be found that  is (A + 1)-strong and induced by the canonical extender, so 

by Lemma 9 we may assume that  M[j(G)] is closed under ~/-sequences. Further, 

such "y must be unbounded in n, so we may consider some such ~, above the gap 

in the forcing. Thus, for A in the ground model, the Gap Forcing Theorem shows 

that  the restricted embedding j:  V --~ M witnesses the A-strongness of ~, for A 

in V, and so n was a Woodin cardinal in V, as desired. | 

Define that  a forcing notion is m i l d  relative to n when every set of ordinals 

of size less than n in the extension has a name of size less than n in the ground 

model. For example, the reverse Easton iterations one often finds in the literature 

are generally mild because the tail forcing is usually sufficiently distributive, 

and so any set of ordinals of size less than n is added by some stage before n. 

Additionally, any n-c.c, forcing is easily seen to be mild. 

COROLLARY 16: Mild gap forcing creates no new strongly compact cardinals. I f  

n is A-strongly compact after forcing that is mild relative to ~ and admits a gap 

below n, then it was A-strongly compact in the ground model; and every strong 

compactness measure in the extension is isomorphic to one that extends a strong 

compactness measure from the ground model. 

Proof'. The point is that  after mild forcing, every strong compactness measure 

it on P~0 in the extension is isomorphic to a strong compactness measure/2 that  

concentrates on (P~O) y. To see why this is so, let j :  V[G] --4 M[j(G)] be the 

ultrapower by it, and let s = [id]~. Thus, j " 0  c_ s c_ j(0) and Isl < j (n) .  

By mildness s has a name in M of size less than j (n) ,  and using this name 

we can construct a set ~ c M such that  j " 0 c ~ c_ j(0) and N < j (n)  in 

M.  Furthermore, since it is isomorphic to a measure concentrating on 0, there 

must be some ordinal ( < j(0) such that  M[j(G)] = {j(h)('~) I h c V[G] }. I 

may assume that  the largest element of ~ has the form (a, ~}, using a suitable 

definable pairing function, by simply adding such a point if necessary. Let/2 be 

the measure germinated by ~ via j ,  so that  X • [t ~-~ ~ • j ( X ) .  Since ~ is a subset 

of j(0) of size less than j (~)  in 'M,  it follows tha t /~  is a fine measure on P~0 in 

V[G] that  concentrates on (P~O) v.  I will now show that  # and/2 are isomorphic. 

For this, it suffices by the seed theory of [Ham97] to show that  every element of 

M[j(G)] is in the seed hull X = { j ( h ) ( ~ ) l h  • V[G]} -~ M[j(G)] of ~. By the 

choice of ~ we know that  ¢ • X and so it is easy to conclude that  j(h)(~) • X 
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for any function h • V[G], as desired. So every strong compactness measure is 

isomorphic to a strong compactness measure that  concentrates on (P~8) y. 

Now the corollary follows because the restricted embedding j [ V: V --+ M 

must be definable (with a name for # as a parameter)  in V by the Gap Forcing 

Theorem, and using this embedding one can recover/~ N V, which is easily seen 

to be a fine measure on P~O in V, as desired. | 

COROLLARY 17: Gap forcing creates no new supercompact cardinals. Indeed, 

it does not increase the degree of supercompactness of any cardinal I f  ~ is A- 

supercompact after forcing with a gap below ~, then ~ was A-supercompact in 

the ground model, and further, every supercompactness measure in the extension 

extends a supercompactness measure in the ground model. 

Proof." Suppose that  j :  V[G] --~ M[j(G)] is the ultrapower by a A-supercompact- 

ness measure # in V[G]. The Gap Forcing Theorem implies that  the restricted 

embedding j :  V -+ M is definable from parameters  in V, and Lemma 8 implies 

that  M x g M in V. In particular, [id]~ -- j " A E M, and so # A V must be in V, 

as desired. | 

COROLLARY 18: Gap forcing creates no new almost huge cardinals, huge 

cardinals, or n-huge cardinals for any n E w. 

Proof: This argument is just the same. If  j :  V[G] -+ M[j(G)] is an almost 

hugeness or hugeness embedding in V[G], then the Gap Forcing Theorem implies 

that  the restricted embedding j:  V ~ M is definable from parameters  in V and 

Lemma 8 shows that  it is has the corresponding amount of hugeness there. | 

Let me close with the following observations. 

OBSERVATION 19: The requirement that the initial factor P is nontrivial in 

the definition of gap forcing P * Q cannot be omitted in the proof of  the Gap 

Forcing Theorem. This is because it is relatively consistent that a non- 

measurable cardinal ~ is made supercompact by highly closed forcing; indeed, 

this can be achieved by the forcing to add a Cohen subset to ~. 

Proof: Let G~ be V-generic for the reverse Easton ~-iteration F~ that  at every 

inaccessible cardinal stage 7 < ~ adds a Cohen subset A~ g 7 (i.e., by forcing 

with initial segments). The model V = V[G~] has the desired characteristics. 

First, I claim that  ~ cannot be measurable in V. If it were, there would be an 

elementary embedding j :  V[G~] --+ M[j(G~)] with critical point ~, and by the 
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definition of ]P~, we would know that  j(G,~) = G,~ * A * Grail, where A c_ a is 

M[G,~] for the forcing Add(~, 1) M[a-] that  adds a Cohen subset to a at stage a. 

But since P(a) MIamI = P (a )  V[a~l, this forcing is the same in M[G~] as in V[G.], 
and has the same dense sets in these two models. Thus, A would actually be 

V[G~]-generic for Add(n, 1), contradicting the fact that  A • V. 

Second, I claim that  forcing with Add(n, 1) over V makes a fully supercompact.  

Indeed, if g c_ a is V-generic for this forcing, then the usual lifting arguments 

show that  a remains supercompact in V[a.][gl ,  i.e., in V[g], as desired. | 

Let me point out that  a can be seen to be weakly compact in V by the lifting 

techniques for weakly compact embeddings. Thus, the observation provides a way 

to make any measurable cardinal a (or supercompact,  etc.) into a weakly compact 

non-measurable cardinal whose measurability (or supercompactness, etc.) can be 

easily restored. 

OBSERVATION 20: The closure assumption on the embedding in the Gap Forcing 

Theorem cannot be omitted, because i f  there are two normal measures on the 

measurable cardinal a in V then after merely adding a Cohen real x there is an 

embedding j: V[x] ~ Mix] that does not lift an embedding from the ground 

model. 

Proof: Suppose that  #0 and #1 are normal measures on a in V and x is a V- 

generic Cohen real. By the L4vy-Solovay Theorem [L4vSo167], these measures 

extend uniquely to measures/2o and/21 in V[x], and furthermore the ultrapowers 

by the measures /2o and /21 in V[x] are the unique lifts of the corresponding 

ultrapowers by #0 and #1 in V. Let j:  V[x] -+ M[x] be the w-iteration determined 

in V[x] by selecting at the n ~h step either the image of/20 or of/21, respectively, 

depending on the n th digit of x. If <a~ I n < a~) is the critical sequence of this 

embedding, then for any X c_ g the standard arguments show that  a~ • j ( X )  if 

and only if X is in the Ineasure whose image is used at the n ~h step of the iteration. 

Suppose now towards a contradiction that  the restricted embedding j F V is 

amenable to V. I will show that  from j [ P(a) V one can iteratively recover 

the digits of x. First, by computing in V the set { X c_ a I a • j ( X )  }, we learn 

which measure was used at the initial step of the iteration and thereby also learn 

the initial digit of x. This information also tells us the value of al  = J,x(o) (a). 

Continuing, we can compute in V the set { X c_ a I al • j ( X )  } to know the next 

measure that  was used and thereby learn the next digit of x and the value of a2, 

and so on. Thus, from j [ P(a) V in V we would be able to recursively recover x, 

contradicting the fact that  x is not in V. | 
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The argument works equally well with any small forcing; one simply uses a 

longer iteration. 

References 

[Ham97] 

[nam98a] 

[Ham98b] 

[HamSh198] 

[Ham99] 

[HamWdn] 

[Lav78] 

[LdvSo167] 

[Mit72] 

[Sco61] 

[Si171] 

J. D. Hamkins, Canonical seeds and Prikry trees, Journal of Symbolic 
Logic 62 (1997), 373-396. 

J. D. Hamkins, Destruction or preservation as you like it, Annals of Pure 
and Applied Logic 91 (1998), 191-229. 

J. D. Hamkins, Small forcing makes any cardinal superdestructible, 

Journal of Symbolic Logic 63 (1998), 51-58. 

J. D. Hamkins and S. Shelah, Superdestructibility: a dual to the Laver 

preparation, Journal of Symbolic Logic 63 (1998), 549-554. 

J. D. Hamkins, Gap forcing: generalizing the Ldvy-Solovay theorem, 

Bulletin of Symbolic Logic 5 (1999), 264-272. 

J. D. Hamkins and W. H. Woodin, Small forcing creates neither strong 

nor Woodin cardinals, Proceedings of the American Mathematical Society 
128 (2000), 3025-3029. 

R. Laver, Making the supercompactness of  ~ indestructible under ~- 

directed closed forcing, Israel Journal of Mathematics 29 (1978), 385- 
388. 

A. Ldvy and R. M. Solovay, Measurable cardinals and the Continuum 

Hypothesis, Israel Journal of Mathematics 5 (1967), 234-248. 

W. Mitchell, Aronszajn trees and the independence property, Annals of 
Mathematical Logic 5 (1972-73), 21-46. 

D. S. Scott, Measurable cardinals and constructible sets, Bulletin of the 
Polish Academy of Sciences, Mathematics 9 (1961), 521-524. 

J. Silver, The Consistency o f  the Generalized Continuum Hypothesis with 

the existence o f  a Measurable Cardinal, in Axiomatica Set Theory (D. 
Scott, ed.), Proceedings of Symposia in Pure Mathematics 13 (1971), 

383-390. 


